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We provide a simple, but physical analysis for cell irreversibility and apoptosis in response to an ultrashort
(nanosecond), high-intensity electric pulse. Our approach is based on an energy landscape model for deter-
mining the temporal evolution of the configurational probability function p(q). The primary focus is on ob-
taining qualitative predictions of a pulse width dependence to apoptotic cell irreversibility that has been
observed experimentally. The analysis couples a distributed electrical model for current flow with the Smolu-
chowski equation to provide self-consistent, time-dependent transmembrane voltages. The model captures the
essence of the experimentally observed pulse-width dependence, and provides a possible physical picture that
depends only on the electrical trigger. A number of interesting features are predicted.
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I. INTRODUCTION

The use of very high electric fields(,100 kV/cm or
higher) with pulse durations in the nanosecond range[1–3]
has been a very recent development in bioelectrics. Tradi-
tionally, most electroporation studies have focused on rela-
tively low external electric fields(less than a kilovolt per
centimeter), applied over time periods ranging from several
tens of microseconds to milliseconds[4]. A number of im-
portant aspects associated with the outer cell membrane such
as the field-dependent rupture, the influence of medium con-
ductivity and pH, and possibilities for giant pore formation
have been analyzed[5], thus contributing to our current un-
derstanding on this subject. From a practical standpoint, tra-
ditional electroporation and also shorter electrical pulses
could be useful for various applications ranging from cellular
electroporation[6–8], production of hybridomas[9,10], the
injection of xenomolecules such as hormones, proteins,
RNA, DNA, and chromosomes[11–17], the electrofusion of
dielectrophoretically aligned cells[18,19], and the nonther-
mal destruction of micro-organisms[20–22]. In addition,ex
vivo applications of electroporation have involved the treat-
ment of white blood cells[23] and platelets[24] outside the
body. In ex vivo studies, electroporation was used to load
drugs, and the cells were subsequently reintroduction for
therapy. Manipulation of the oxygen binding capability[25]
and the electroinsertion of proteins[26] has also been carried
out. In vivo applications have included the delivery of potent
anticancer drugs into solid tumors[27,28].

There appear to be inherent advantages in using short
electric pulses, and these include(i) negligible thermal heat-
ing, (ii ) the ability to develop large electric fields and peak
powers, with a lower energy input,(iii ) the possibility of
selecting the desired time scales through pulse width ma-
nipulation, and(iv) the ability to penetrate the outer(plasma)
membrane, and create large transmembrane potentials across
subcellular organnelles. This can effectively open the way to

intracellular electromanipulation, without destroying the
outer membrane[29]. The commencement of high-intensity,
pulsed electric-field work in recent years, has led to the fol-
lowing important observations.(i) It is possible to maintain
the integrity of the outer cell membrane despite the high(
,200 kV/cm electric fields.(ii ) Multiple pulses have been
observed to do more irreversible damage than single-shot
electric shocks.(iii ) Irreversible cell damage is seen to occur
at the intracellular organelles(e.g., mitochondria), while the
outer membranes remain intact[29]. (iv) Calcium is released
from the intracellular endoplasmic reticulum in response to
external voltage pulses[29,30]. (v) Cell apoptosis has been
observed[29,31] for cells subjected to the short electrical
pulses. In particular, apoptosis has been seen to be mitochon-
drial dependent and completely unrelated to plasma mem-
brane electroporation. It may be mentioned here, that in the
context of suchin vitro experiments, apoptosis is defined by
the presence of several well-defined markers, such as
Annexin-V binding, caspase activation, a decrease in for-
ward light-scattering during flow cytometry, and of cyto-
chromec release into the cytoplasm.(vi) Finally, the ob-
served apoptotic behavior appears to depend on the pulse
duration. Thus, for cells subjected to external electric fields
at a constant energy level, much stronger apoptosis markers
were observed only for the longer(,300 ns) pulses, less at
the shorter(,60 ns) durations, and almost negligible effects
for a short 10 ns pulse of the same input energy.

We have recently presented concrete experimental data
showing a pulse-width dependence on the cell apoptotic be-
havior [29]. For example, results ofin vivo studies showing
ultrashort pulse induced caspase activation(an apoptotic
marker) through FITC-VAD-fmk fluorescence, are shown in
Fig. 1. Pulse durations of 10 and 60 ns were used, with a
fixed total energy input of 1.7 J/cc from the external field.
The activation was seen to be stronger for the longer 60 ns
pulse(despite the lower applied external field), as compared
to the 10 ns duration. Similarly, Fig. 2 shows data on caspase
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activity in Jurkat cells subjected to three pulse durations of
10, 60, and 300 ns, but a fixed total energy of 1.7 J/cc. It
might be mentioned that it is experimentally possible to gen-
erate fields with a well defined energy output for a given
pulse duration as discussed elsewhere[29]. The main result
of Fig. 2 is that longer duration pulses are again seen to
produce stronger apoptotic behavior, with a clear monotonic
trend.

The ability of the short, high-intensity pulses to bring
about intracellular damage and apoptotic behavior is not well
understood. However, there is now mounting evidence that
apoptosis is controlled and regulated by mitochondria in
cells [32–36]. This suggests that mitochondria should per-
haps be a focal point for the study of cell death and irrevers-
ibility brought about by the application of ultrashort electri-
cal pulses. Mitochondria are the cellular power plants
assigned to ATP production and maintain a transmembrane
proton gradient to drive a variety of tasks[37]. Observations
of apoptosis have been indicative of a possible three-step
mitochondrial model:(i) an initial phase during which signal

transduction cascades or damage pathways are activated,(ii )
a mitochondrial phase during which the mitochondrial mem-
brane function is lost, and(iii ) a final phase involving protein
releases causing the activation of catabolic proteases and nu-
cleases. It has also been established that the release of cyto-
chromec from mitochondria into the cytosol is able to acti-
vate procaspases that amplify the cell death process[38].
Cytochromec is a six coordinate, low-spin heme iron spe-
cies, and is primarily located at the outer face of the inner
mitochondrial membrane[39]. This release of cytochromec
and other proapoptotic molecules, has been shown[33–36]
to be facilitated by a transient opening of the mitochondrial
permeability transition pore(MPTP). This mitochondrial per-
meability transition(MPT) appears to be driven by several
factors including calcium overload, oxidative stress, and mi-
tochondrial membrane depolarization. The MPT operates at
the crossroads of two distinct physiological pathways, i.e.,
the Ca+2 signaling network during the life of cells, and the
effector of apoptotic cascade during Ca+2-dependent cell
death[40]. The role of transmembrane potential(along with
the pH) on MPT regulation and programmed cell death has
now been recognized as well[41]. Since voltage changes are
associated with the MPTP that in turn is linked to apoptosis,
it is natural to seek a possible link between cell death and
transmembrane voltage changes induced by the application
of an external voltage pulse.

There is little doubt that action potentials and transmem-
brane voltages can bring about conformational changes in
proteins. Ion channels are common examples in which
charge translocation facilitates changes in pore conductivity
[42]. More recently, experimental evidence based on Raman
spectroscopy has revealed conformational changes in cyto-
chromec at the mitochondrial membranes[43]. The data,
which is indicative of the partial opening of the heme pocket
and alterations of the heme thioether bonds, provides conclu-
sive evidence of conformational changes in cytochromec
[43]. Configurational changes with the proteins of sodium
channels, is another example. These changes in conformation
can be driven by electrostatic forces associated with nearest
neighbor interactions as hypothesized in the “sliding helix”
model[44–47]. The voltage controlled, screw-helical mecha-
nism for conductivity modulation has also recently been ap-
plied to the study of potassium channels[48,49] and other
electrostatic aspects[50,51]. In view of the collective evi-
dence then, we hypothesize that irreversibility and apoptosis
in cells subjected to high-field, short duration(, nanosec-
ond) pulses may be the result of irreversible conformational
changes at the inner mitochondrial membrane driven by the
high electric fields arising from strong increases in trans-
membrane potentials. Qualitative predictions in support of
the field dependent irreversibility are presented here on the
basis of a simple energy-landscape model.

II. MODELING DETAILS

A. The energy landscape approach

Conformational changes associated with the apoptotic be-
havior of cells subjected to high-intensity, ultrashort electric
pulses could be driven by electrostatic forces arising from

FIG. 1. In vivo studies showing ultrashort pulse induced caspase
activation (an apoptotic marker) through FITC-VAD-fmk fluores-
cence. Pulse durations of 10 and 60 ns were used, with a fixed total
energy input of 1.7 J/cc from the external field.

FIG. 2. Data showing caspase activity in Jurkat cells subjected
to a single pulse of variable duration, but fixed total energy of
1.7 J/cc. Longer duration pulses are again seen to produce stronger
apoptotic response.
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Coulomb interactions between charges(and multipoles) em-
bedded in the proteins and the externally applied electric
field. These interactions should give rise to an n-dimensional
“energy landscape” whose magnitude is dependent on the
position vectors of the constituent charges. Clearly, the de-
tails of the various charges at the mitochondrial membrane
are very complicated and not fully known. Even if some of
the known data were used, an accurate description would not
be possible since proteins are capable of movement[52],
patterning[53], and self-organization[54], based on a fluid
mosaic description of membranes. Hence, a quantitative and
precise calculation of the spatial charge distributions and re-
lated energy magnitudes is almost intractable. Here, we at-
tempt to present a simple qualitative analysis based on the
notion of charge dynamics across an energy landscape in the
presence of internal fluctuations and dissipation to account
for some of the experimental observations. The central goal
is to demonstrate that a simple analysis does capture the
central features of the cellular response, and that predictions
are in keeping with the observed data. Thus, this model
analysis will help provide explanation for the observed effect
not being as strong at the shorter 60 ns duration, but being
more pronounced for the longer,300 ns pulse of the same
energy.

While the cell membrane system may initially be in equi-
librium, the application of an external field changes the land-
scape and produces charge displacement as the configuration
evolves dynamically towards a local energy minima. In this
picture, the dynamics of conformational change can then be
represented in terms of continuous and random trajectories
across the energy landscape defined by electrostatic interac-
tions between the various charges, dipoles, and external elec-
tric field in the vicinity of the mitochondrial membrane. In a
sense, this amounts to a Markovian model for simulating the
time course of electrophysiological events, and is similar to
Kramers’ theory of activated processes in the condensed
phase[55]. Friction must play an important role in the kinet-
ics and the conformational dynamics in response to the ap-
plied electric pulses, due to possible energy dissipation into
the vibrational modes(confined phonons) of the system. In
general, friction always arises due to coupling between the
macroscopic mechanical variables(such as the charge dis-
placement) and the various fluctuating, internal degrees of
freedom. Frictional losses become especially important for
the ultrashort, finite-durations of interest here. This is ex-
pected since the final states should depend not only on the
initial starting state(possible non-Markovian memory ef-
fect), but also on the duration over which the driving force is
applied. In addition, there is always a time-lag for the trans-
membrane potentials to build up(i.e., the membrane charg-
ing time), and hence, short-duration pulses can be expected
to have a smaller effect than longer pulses. Due to the
fluctuating-dissipative nature of the system, the evolution of
the mechanical variables can be expected to follow a diffu-
sive Brownian motion across the energy landscape. The con-
cept of using a diffusive motion across an energy landscape
was originally proposed by Smoluchowski[56], and subse-
quently used by Kramers to develop the theory of activated
transition rates in the limit of large friction[55]. The Smolu-
chowski equation for diffusive motion is

] p/] t = ] fhp/Rsqdjh] Wsqd/] qj + hkBT/Rsqdj ] p/] qg/] q,

s1d

wherep is the probability density of the configurational dis-
placementq at time t. Rsqd is the friction coefficient with
units of electrical resistance that could be a nonlinear func-
tion of the “q” coordinate, whileWsqd is the mean potential,
kB the Boltzmann constant, and T the temperature in K. The
first term on the right side of Eq.s1d represents drift, while
the second denotes diffusion. The diffusion coefficientDsqd
is related to the friction coefficient asDsqd=kBT/Rsqd. In
thermal equilibrium, under steady-state conditionspsqd
,expfWsqd / skBTdg. Here, a constant frictional coefficient
fi.e., Rsqd independent ofqg will be assumed for simplic-
ity.

Since the energy functionWsqd is very complex and is not
known for the mitochondria membrane system, we chose to
use a harmonic model for simplicity. While this can easily be
refined, many of the features observed in pulsed experimen-
tal data will nonetheless emerge from this simple model.
Besides, the harmonic potential has been applied to voltage
gating of the “Shaker” potassium channel[57] based on an
energy landscape, and is thus a reasonable starting point. The
following form for the energy has been used for ion channels
[42,57], with q being assigned units of charge

Wsqd = aq2 − qV, s2d

where “a” has units of inverse capacitance and taken to
equal 3.12531018 F−1, and V is the transmembrane volt-
age. Here, we assume that conformational change upon
the application of an external electric field, is caused by
charge movementswith associated displacement “q” d in a
manner similar to the proposed screw-helical motion
within the shaker channelf50g. It is natural and physical
to assume then, that charge movement will occur in the
presence of other fixed charges within the neighborhood.
Consequently, the energyWsqd can be expected to first
begin increasing with “q, ” as the configuration changes
from the initial stable state. However, due to the discrete
nature of the charge distribution in the vicinity, a local
energy minima must exist for larger “q” values. The
charges would move into this secondary minima provides
the driving force was sufficiently large to slide the chain
into the new minimal-energy configuration. In accordance
with this model, the energyWsqd has been assumed to
have a two-valley, piecewise-parabolic structure shown
schematically in Fig. 3. Such a multivalley energy sce-
nario is fairly common in many-body systems, and occurs
for example, in the context of conduction electron ener-
gies within a crystalline lattice. Figure 3 shows a second-
ary minima for q=q2=1.5q1, and a relative barrier atq
=q1=0.8310−19 C. The overall energy relationWsqd for
this model is taken to be

Wsqd = aq2 − qV, for 0 ø q ø q1 s3ad

and
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Wsqd = asq − q2d2 + aq2s2q1 − q2d − qV for q1 ø q

s3bd

to maintain continuity at q=q1. Such a multivalley,
q-dependent model is commonly applied for the analysis of
in many physics-related problems of high-field transport.
The treatment of charge conduction at high electric fields in
semiconductors based on a many-valley, multiband model
with bandstructure calculations, is a relevant example
f58,59g. The secondary minima in Eq.s3bd has been assigned
a higher magnitude than the primary minima atq=0. This
simply reflects a finite-size effect and the breakdown of
translational invariance. For infinitely long strings of trans-
lationally invariant discrete charges, the potential would
have been periodic. An applied voltage “V” reduces the po-
tential barrier as seen in Fig. 4. The energy function deter-
mines drift in configuration space and governs the changes.
A positive Esrd slope signifies a driving force towards the
initial equilibrium state, while a negative slope forces con-
figurational change. Choosingq2=1.5q1=1.2310−19 C, and
a=3.12531018 the barrier begins to cease at0.25 V. At
0.375 V alocal minima at aboutq,0.75q1 exists, and so a
finite configurational change leading to a final stable state
is predicted. However, this change would be reversible,
since upon removal of the external potential, the energy
landscape would revert to the upperV=0 curve. Due to a
monotonic drift towards the initial equilibrium state, for
the V=0 situation upon voltage termination, a full recov-
ery to the initial state is predicted. At 0.5 V and higher,
the local minima within the central valley, vanishes. This
heralds the threshold of a transition into an irreversible
regime. For such a case, there is a possibility for contin-
ued movement away from equilibrium, even upon voltage
termination, provided the system was in a state beyondq1.
Thus, for transient voltage pulses, stability would depend
on the ability of the system to drift past the intervalley
barrier maximas within the duration of the applied voltage

pulse. Clearly, very short pulses would not lead to irrevers-
ibility. Conversely, a significantly large voltage would be
necessary for irreversible destruction for shorter pulse dura-
tions. This qualitative reasoning is in keeping with the actual
experimental observation, discussed in the next section.

B. Time dependent electrical calculations

For a more complete and accurate analysis, the temporal
evolution of the transmembrane voltage[present in Eqs.(3a)
and(3b)], created by the externally applied bias, needs to be
determined. An approach to such calculations is through a
time-domain nodal analysis involving a distributed equiva-
lent circuit representation of a cell and its membrane struc-
tures. Details of this method and its implementation have
been given elsewhere[60,61], and so only a brief outline will
be discussed here. For simulations, the entire cell volume can
be broken up into finite segments, and each segment repre-
sented by a parallel RC combination to account for the cur-
rent flow and charging effects. Using azimuthal symmetry
the three-dimensional structure can be mapped into ther and
w coordinates of a spherical system. Here, details of the cell
shape were ignored for simplicity. Thus, in the simulations,
the computational region was a sphere that included the cell,
its substructure, and the surrounding suspension medium. It
was discretized along ther andu direction as shown in Fig.
5. Based on symmetry, only a quarter of the computational
region was considered. For simplicity, membranes were
taken as an integral unit, i.e., this subregion is not further
discretized. For each element, the current continuity equation
given below holds:

¹W ·SJW +
] DW

] t
D = 0, s4d

whereJ is the current density andD the electric displace-
ment vector. For nodes with index 0, i ,n and 0, j ,m, as

FIG. 3. The simple, two-valley energy landscape model used
here for the conformational change calculations. A natural potential
barrier atq=q1 and a secondary minima atq=q2=1.5q2 have been
shown. FIG. 4. Effect of various applied voltages on the model energy

landscape of Fig. 4.
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shown in Fig. 5, the above equation can be rewritten in the
following form:

o
k=1

6 SsEW + «
] EW

] t
D

k
·AW k=o

k=1

6

Ik = 0, s5d

whereI5 and I6 are currents along thef direction,AW k is the

surface area,EW the electric field,« the permittivity, ands is
the conductivity. Considerations of geometric symmetry of
the computation region leads toI5= I6=0 due to the equipo-
tentials. Consequently, one obtains the following equation
discretized in space and time:

s1
Vi−1,j

t − Vi,j
t

Dr
A1 + s2

Vi+1,j
t − Vi,j

i

Dr
A2 + s3

Vi,j−1
t − Vi,j

t

rDu
A3

+ s4
Vi,j+1

t − Vi,j
t

rDu
A4+

«1

Dt
FVi−1,j

t+1 − Vi,j
t+1

Dr
−

Vi−1,j
t − Vi,j

t

Dr
GA1

+
«2

Dt
FVi+1,j

t+1 − Vi,j
t+1

Dr
−

Vi+1,j
t − Vi,j

t

Dr
GA2+

«3

Dt
FVi,j−1

t+1 − Vi,j
t+1

rDu

−
Vi,j−1

t − Vi,j
t

rDu
GA3 +

«4

Dt
FVi,j+1

t+1 − Vi,j
t+1

rDu
−

Vi,j+1
t − Vi,j

t

rDu
GA4

= 0. s6d

In the above,Vi,j
t stands for the potential at nodesi , jd at time

t. The radial distance between nodessi , jd and sn,md is r.

The areasA1 through A4 are shown in Fig. 5. Also,s1
through s4, and «1 through «4 are the conductivities and
permittivities, respectively, at faces 1–4. Thus, if a node
were to be within the environment medium, then all thes
values would be the same. However, for nodes on a mem-
brane,s1 would be different froms2.

In order to reduce the computation load, special boundary
conditions were applied, and only a quarter of the entire
spherical computational region was considered based on the
inherent symmetry. Nodes withj =0 and j =m had to be
treated carefully. OnlyI1, I2, and I4 are nonzero since, the
targeted element only has 5 faces as face 3 shrinks to a line.
For j =0 and 0, i ,n, Eq. (6) becomes

s1
Vi−1,j

t − Vi,j
t

Dr
srDr/2d2fcosu − cossu + Du/2dg

+ s2
Vi+1,j

t − Vi,j
t

Dr
sr − Dr/2d2fcosu − cossu + Du/2dg

+ s4
Vi,j+1

t − Vi,j
t

rDu
rDr sinsu + du/2d +

«1

Dt
FVi−1,j

t+1 − Vi,j
t+1

Dr

−
Vi−1,j

t − Vi,j
t

Dr
Gsr + Drd2f− 1 − cossu + Du/2dg

+
«2

Dt
FVi+1,j

t+1 − Vi,j
t+1

Dr
−

Vi+1,j
t − Vi,j

t

Dr
Gsr − Dr/2d2f− 1

− cossu + Du/2dg +
«4

Dt
FVi,j+1

t+1 − Vi,j
t+1

rDu
−

Vi,j+1
t − Vi,j

t

rDu
G

3rDr sinsu + Du/2d = 0. s7d

In the above,u=p+ j 3Du=p and Du is sp /2d /m. For an
electric field applied along thez direction sas shown in Fig.
5d and potential at node withi =n is zero, i.e.,Vn,j =0. Nodes
with index j =0 are equipotentials, soVi,m=Vn,j =0. Another
boundary condition to be considered is for nodes withi =0.
The potentials of such nodes is calculated asV0,j =
−E0R cosu, for j =0¯m, where E0 is the externally ap-
plied electrical field andR the radius of the computational
region.

Combining with the boundary conditions discussed
above, one getsN equations for theN unknown node volt-
ages. TheseN equations can easily be solved through matrix
inversion of the formAx=B. HereA is a sparse coefficient
matrix. Potential on each node is easily updated at each time
step.

In general, the membrane conductances are dynamic and
depend on possible electroporation effects. This aspect has
been incorporated into our simulations through the use of a
Smoluchowski equation driven pore growth and dynamics.
Details of the formation energy, pore dynamics and growth
have been discussed at length in our previous contributions
[60,61]. The development of pores within the membranes
(outer cell, mitochondrial membrane, etc.) all depend on the
transmembrane voltage, and hence, this is a time- and
position-dependent sequence of events. The pore formation
and dynamics influences both the conductivity and permittiv-
ity (the water-filled pores have an inherently higher dielectric

FIG. 5. Schematic of one quarter of the model used to represent
a cell for the distributed electrical calculations. The dotted box
shows a typical element with current flows.
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constant than the membranes), and were taken into account
for the calculations of total current as given in Eq.(5).

III. RESULTS AND DISCUSSION

Traditionally, electrical pulses with durations on the order
of milliseconds and field intensities in the 1–10 kV/cm
range have been used[62,63]. Here, however, our focus is on
the much shorter nanosecond pulse durations. The advantage
of employing such ultrashort pulses is perhaps not immedi-
ately obvious, and merits a quick discussion. Figure 6 shows
a sketch of a spherical shell with a concentric inner or-
ganelle. We assume for simplicity that the conductivities of
both membranes are zero, and that current continuity applies
across line ABCDE shown in Fig. 6. For long-duration,
slow-rising pulses, a near quasisteady state prevails, and the
current densityJ is nearly given byJ=sE+«sdE/drd,sE.
Choosing the cell center as the reference voltage, the node
potentials are roughlyVD,0 andVB,VC. Also, as there is
no current flow through the membrane, under quasisteady
state VCD,VFG,0. Thus, the potential across the inner
membrane can be expected to be very modest, at best. Fast
rising, ultrashort pulses, on the other hand, would force a
large nonequilibrium transient, and create substantially large
valuesVCD and VFG across the inner membranes. Thus, ul-
trashort pulses provide a means for creatinghigh transmem-
brane voltages across the subcellular organelles.

A simple double-shelled cell model was used with the
parameters given in Table I that are typical of biological
cells, for a quantitative evaluation of the above idea. Most
values were chosen from Ermolina[64]. The response of a
low intensity 280 ns trapezoidal pulse withE=5 kV/cm, and
40 ns rise and fall times, was compared to that of a 11 ns
high-intensity trapezoidal pulse withE=25 kV/cm, and
1.75 ns rise and fall times. The long pulse bears greater en-
ergy. Figure 7 shows the transmembrane potentials across
both the inner(nuclear) and outer(plasma) membranes for
the longer 280 ns pulse. The inner membrane potential is not
seen to rise to large values, and decays down after about
100 ns. This is due to inner membrane discharging and the

evolution towards a low inner membrane voltage as qualita-
tively discussed through Fig. 6. However Fig. 8, for the
much shorter 11 ns pulse, shows the inner membrane trans-
membrane potential could easily reach high magnitudes, well
exceeding the outer transmembrane values.

We now focus on the temporal development of transmem-
brane voltages and pore radii of mitochondria, based on the
distributed, electrical model. In order to model the mitochon-
dria, a concentric triple-shell model as discussed by Asami
and Irimajiri [65] was used. The electrical parameters are
given in Table II. It may be pointed out that the values of
Asami and Irimajiri are not very recent. Hence, it would be
useful to generate more refined experimental data for such

FIG. 6. Sketch of a spherical cell with internal organnelle.

TABLE I. Parameters used in simple simulation.

Conductivities:

Environment 0.6 S/m

Cell membrane 0.0 S/m

Cytoplasm 0.6 S/m

Organelle membrane 0.0 S/m

Organelle inclusion 0.6 S/m

Relative permittivity

Environment 80.0

Cell membrane 8.0

Cytoplasm 80.0

Organelle membrane 4.0

Organelle inclusion 80.0

Geometry parameters

Radius of the simulation region 10mm

Radius of cell 5mm

Thickness of cell membrane 5 nm

Radius of organelle 1mm

Thickness of organelle membrane 10 nm

FIG. 7. Transmembrane potential of outer membrane and inner
membranes for a 5 kV/cm, 280 ns duration trapezoidal pulse for
the cell model of Fig. 4.
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ultrashort, high-field conditions, and carry out a series of
simulations to probe the effect of parameter variations. Such
efforts are underway. Here, we simply present and discuss
the pulse-width dependent qualitative trends(that are physi-
cally expected to remain valid) based on a set of published
data. Figure 9 shows the simulation results for the membrane
potentials with time for a cell subjected to a 100 kV/cm
pulse with 1.5 ns rise and fall times, and a 10 ns “ontime.”
Voltages across the outer cell membrane as well as the inner
and outer mitochondrial membranes, are shown. Of these,
outer mitochondrial membrane is predicted to have the low-
est potential. Another significant point is that both the outer
cell and the inner mitochondrial membranes are subjected to
fairly large transient voltages, with peak values in excess of
1.9 V. Thus, a transient overshoot of the transmembrane po-
tential is predicted. This transient overshoot aspect agrees

very well with a recent experimental report by Meier[66] on
giant planar lipid membranes. As is well documented, a
transmembrane potential of about 1.0 V is known to cause
electroporation under steady-state conditions, or for long-
pulse durations. However, as shown by us previously[2], it
is possible to exceed the 1 V magnitude during ultrashort
transient periods. Physically, since a finite time and energy is
required to work against the molecular arrangement within
the membrane, excessive voltages over short times seem pos-
sible and would not necessarily cause irreversible damage.
Also, in Fig. 9, the potential across the outer cell decays
much more rapidly, while the transmembrane voltage across
the mitochondria is predicted to remain for a much longer
time. The initial drop in the outer membrane potential in the
simulation arises from electroporation. The pore formation
process, whose dynamics and details have been discussed
elsewhere[2,60,61], increase the membrane conductivity,
leading to the voltage decrease. Effects of changing the time
duration of the external voltage pulse for a fixed input energy
(i.e., the pulse-width effect) are next examined. Figure 10
shows the time-dependent transmembrane potentials across
the inner-mitochondrial membrane obtained from the nu-
merical simulation for 10, 60, and 300 ns pulse widths. In
order to keep the overall input energy constant, the electric
fields were chosen to have values of 150, 61.23, and
27.38 kV/cm respectively, for the three durations. This
choice of electric fields is based on the actual values used in
experimental studies by our group[29]. In Fig. 10, the high-
est membrane voltage is at about 1.8 V, and occurs for the
shortest 10 ns pulse. With increasing pulse duration, the peak
voltages decrease in keeping with the role of membrane ca-
pacitive time constants on the temporal development. The
following aspects are evident from the curves of Fig. 10.(i)
First, the peak transmembrane voltages do not scale with the
externally applied electric field. This is in part due to the
voltage-modulated conductivity changes at the membranes.
Hence, despite very high external electric fields, it would not
necessarily be possible to create as large a voltage across the

FIG. 8. Transmembrane potential of outer membrane and inner
membranes for a shorter 25 kV/cm, 11 ns trapezoidal pulse.

TABLE II. Parameters of mitochondria in the triple-shell model
[65].

Conductivities sS/md

Cell membrane 0.0

Cytoplasm 0.95

Mitochondria membrane 0.95310−6

Outer compartment of mito. 0.4

Inner compartment of mito. 0.121

Relative permittivity

Cell membrane 8.0

Cytoplasm 87.7

Compartment of mitochondria 54

Outer membrane of mito. 12.1

Inner membrane of mito. 3.4

Geometry parameters

Diameter of mitochondria 0.92mm

Thickness of mitochondria membranes 7 nm

Thickness of outer compartment 30 nm

FIG. 9. Time dependent potentials across the outer cell and mi-
tochondrial membranes.
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membranes.(ii ) In all cases, the transmembrane voltage be-
gins to decay soon after the external pulse is turned off. The
fastest fall off is for the highest external field.(iii ) Despite
the gradual reduction in transmembrane potential for the
300 ns pulse, its value remains relatively high throughout the
entire duration. Thus, a larger electrical energy is available
within the biosystem for the 300 ns pulse.

Finally, the energy landscape model was applied to probe
the dynamical behavior in response to an externally applied
ultrashort, high-intensity electric pulse. The specific aim was
to ascertain whether irreversibility(and hence, apoptosis)
might have a pulse width dependence at fixed input energy,
as seen experimentally. To this end, time-dependent mem-
brane voltages obtained in Fig. 10 were used as inputs to
construct the dynamical energy surface from the Smolu-
chowski equation(1). A numerical solution of Eq.(1) pro-
vided the temporal evolution of the probability function
psq,td. Since the friction coefficientRsqd is not well known,
a value of 23103V which is in the experimental range re-
ported by Sigg[57], was chosen for these calculations. Re-
sults obtained from our simulations, in response to the 10,
60, and 300 ns pulses are shown in Fig. 11. The figure shows
snapshots of the probability functionpsqd at the specific in-
stants of 30, 200, and 600 ns. These times were chosen as
they are well beyond the respective pulse durations. Figure
11(a) showspsqd for the entireq space, while the higherq
range corresponding to the secondary valley is given in Fig.
11(b). Occupancy of the regionq/q1.1 signifies irrevers-
ibility since the intervalley barrier has a magnitude larger
than the thermal energy. The equilibrium distribution has a
Maxwellian form, while all otherpsqd curves are shifted
(i.e., have a drifted-Maxwellian shape) due to the energy
landscape alteration by the applied voltage. Of these, for the
10 ns pulse, the deviation is the smallest, and hence, nearly
all cells are predicted to recover after the applied pulse. The
excursion into the secondary valley is minimal. However, for
the 60 and 300 ns pulses, a much larger probability of sec-
ondary valley occupancy is predicted. Figure 11(b) shows the

probability distribution forq/q1.1, and is clearly indicative
of the monotonic increases with pulse duration. A quick cal-
culation of the areal ratios under the three curves of Fig.
11(b) yielded normalized magnitudes of 1.0, 0.333, 0.05 re-
spectively, for the 300, 60, and 10 ns pulses. Thus, almost
negligible effects(in terms of irreversibility and possible
apoptosis) are predicted from the shortest 10 ns pulse. This is
in keeping with experimental results. Also, the trend with the
60 and 300 ns excitation also agree favorably with the pro-
gressively stronger marker data for apoptosis and the ob-
served cell mortality numbers.

IV. SUMMARY AND CONCLUSIONS

We have attempted to provide a simple, but physical
model for cell irreversibility and apoptosis in response to an
ultrashort (nanosecond), high-intensity electric pulse. In
view of this collective evidence on cell death and its link to
an electrical stimulation, we hypothesize that apoptotic be-
havior may be the result of irreversible conformational
changes at the inner-mitochondrial membrane. Such changes

FIG. 10. Time dependent transmembrane potentials across the
mitochondrial membranes for 10, 60, and 300 ns pulses.

FIG. 11. Simulation results of the occupancy distribution inq
space.(a) Snapshots of the equilibrium function and at various
times following 10, 60, and 300 ns pulses.(b) Plots emphasizing
higherq values within the secondary valley.
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are likely to be driven by the high electric fields that arise
from strong transient increases in transmembrane potentials.
Our approach is based on an energy landscape model, which
is used to determine the temporal evolution of the configu-
rational probability distribution functionpsqd. Such an en-
ergy landscape picture is not new, and has been used in the
description of protein changes[67], as well as the folding
and unfolding of small globular proteins[68]. In fact, con-
figurational diffusion as a model for protein relaxation was
first suggested by Agmon and Hopfield[67].

The primary emphasis here is on qualitative predictions of
an observed pulse width dependence on cell irreversibility. A
comprehensive and accurate treatment of this problem is ex-
tremely difficult and challenging given that apoptosis can
have several pathways, the sequential details of the biophys-
ics are not well known, and neither are the magnitudes of the
internal energies and configurations. Given the various diffi-
culties, the present model merely attempts to provide a pos-
sible physical picture that is dependent only on the electrical
trigger, and captures the experimentally observed pulse-
width dependence.

Our model is probabilistic through the use of the Smolu-
chowski equation and it couples a distributed electrical
model for current flow to provide the time-dependent trans-
membrane voltages. The results agree the observed experi-
mental data very well. Based on the present model, we pre-
dict a number of interesting features.(i) First, cell
irreversibility at a fixed input energy will depend on the
pulse width, and is likely to have an optimal range. Pulses
that are very short would not have a significant effect due to
insufficient durations for electric field driven conformational
changes. On the other hand, much slower and longer pulses
would also be rendered ineffective due to their inability to
penetrate the membranes of the inner organnelles and de-
velop a significant transmembrane voltage.(ii ) The electrical
effects are likely to be cumulative and to exhibit a memory
effect, provided successive pulses were to be applied with
delay times less than that required for complete recovery of
the psqd profiles. Such a memory effect has indeed been
noted in the context of the ultrashort, high-intensity pulsing.
(iii ) The inherent probabilistic basis of this model, implies
that complete and total killing of cell populations can never
be achieved by a single shot exposure. There will always be
a finite probability distribution below the threshold because

of the diffusive motion in energy space. Only at very low
temperatures might one expect cohesive and “ballistic” mo-
tion. This prediction of incomplete killing is in keeping with
experimental observations.(iv) Furthermore, this model pre-
dicts that the use of very high electric field intensities may
not necessarily have a significantly larger impact. This natu-
rally follows since not only is the pulse duration an impor-
tant factor, but also because the transmembrane potential
would not scale with the applied field. Electroporation and
dynamic changes in conductivity would work to offset the
impact of larger external fields.(v) Here the irreversibility
mechanism is taken to arise from fixed charge and dipole
movements brought about within the membrane by the elec-
trostatic driving force produced by the large transient trans-
membrane potentials. Consequently, excitation processes that
cannot generate large electric fields at membranes, or if their
time durations are small, might not be very effective in elec-
trically triggering apoptotic behavior in cells. For example,
under “contactless” conditions, or for microwave and radio-
frequency excitation, cellular apoptosis may be expected to
be fairly negligible. Such a trend has indeed been observed
in some recent studies involving cells subjected to pulsed
microwave radiation[69].

Finally, we emphasize that here we have attempted to ob-
tain qualitative trends on the pulse-width dependence based
on a simple energy landscape picture. In theory, more refined
estimates and quantitative predictions might be possible by
incorporating a better energy description of the membrane
system. A first step might be the use of randomly-correlated
energy models, as first proposed by Derrida[70]. Refine-
ments to include correlation effects, is an interesting possi-
bility as has been shown recently in the context of het-
eropolymers[71].
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